Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Topology

Subject Code: 4SC06TOP1		Branch: B.Sc. (Mathematics)	
Semester: 6	Date: 06/05/2022	Time: 02:30 To 05:30	Marks: 70
T			

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

a) b) c) d) e) f) g) h)	Attempt the following questions: Define: Topology Define: Closure of a set True/False: If A is closed set then $A^\circ = A$. Give an example of set which is open as well as closed. If $a \in R$ then $\{a\}$ is closed set in R. Give an example of $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$. If X=R and $A = Q$ then find A'. Is every indiscrete topological space X is connected?	[14] (02) (01) (01) (02) (02) (02) (01) (01)
i) j)	State Hereditary property True/False: Every finite set is compact.	(01) (01)
0/	Attempt any four questions from Q-2 to Q-8	
a) b)	Attempt all questions Define lower limit topology and prove it. Define Door space and give an example of i) (X, τ) is a door space and ii) (Y, τ) is not a door space. Let $X = \{1,2,3,4\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$. If $A = \{1,3\}$ then find A°, \overline{A} . And also give an example of set which is not closed.	[14] (05) (05) (04)
	Attempt all questions Let (X, τ) be a topological space and A be a subset of X then prove that $\overline{A} = A \cup A'$.	[14] (05)
b)	Prove that $\tau_c = \{U X - U \text{ is countable or } X - U = X\}$ is topology on set X.	(05)
c)	Let (X, τ) be a topological space and A,B are two subsets of X then prove that $(A \cap B)^\circ = A^\circ \cap B^\circ$. Also verify $(A \cup B)^\circ \neq A^\circ \cup B^\circ$ with example.	(04)

-	Attempt all questions Let (X, τ) be a topological space and Y be a non-empty subset of X then prove that the collection $\tau_y = \{U \cap Y/U \in \tau\}$ is a topology on Y.	[14] (06)
b)	Let (X, τ) be a topological space and A,B be two subsets of X then $(A \cup B)' = A' \cup B'$.	(04)
c)	Define: Exterior point and find it for $A = (0,1)$ of R .	(04)
-	Attempt all questions Let Y be a subspace of X then prove that a set A is closed in Y iff $A = Y \cap C$, where C is closed in X.	[14] (06)
b)	Let (X, τ) be a topological space and A,B be two subsets of X then $\overline{A \cup B} = \overline{A} \cap \overline{B}$.	(04)
c)	Let (X, τ) be a topological space and A,B be two subsets of X then prove that i) $Bd A = \overline{A} \cap \overline{X - A}$ and ii) $Bd (A \cap B) \subset Bd A \cup Bd B$.	(04)
-	Attempt all questions Let X and Y be topological space and $f: X \to Y$ then following are equivalent: i) f is continuous ii) for every subset A of X then $f(\overline{A}) \subset \overline{f(A)}$ iii) for every close set B in Y then $f^{-1}(B)$ is closed in X.	[14] (07)
b) c)	Let X be a topological space. A and B be two open subsets of X then A and B are separated $A \cap B = \phi$. Define Continuous function with an example.	(04) (03)
Q-7 a) b) c)	Attempt all questions Prove that Homeomorphism is an equivalence relation in the collection of topological spaces. Define Disconnected space with an example. Define Compact set with an example.	[14] (07) (04) (03)
Q-8 a) b)	Attempt all questions Let X be a topological space then X is disconnected iff there exist a non-empty proper subset of X which is both open and closed in X. Define: T_1 –space and Give an example of topological space which is T_1 –space but not T_2 –space.	[14] (07) (07)

